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INTRODUCTION

In this paper we deduce a special form of Jackson's fundamental direct
theorem of best approximation. We give an asymptotic best upper bound of
the uniform approximation error of differentiable functions by algebraic
polynomials.

We attempt to find the algebraic version of the theorem of Favard [1 J, and
Achieser and Krein [2]:

(I)

In Sections 2 and 3 we prove the following

THEOREM I. Let rEIN and n ~ r - I. Then

En(Wr) <Kr · (n + 1- r)!j(n + I)! (2)

The constant K r cannot be improved. This fact is a result of Bernstein's
theorem [4]:

lim nr·En(Wr)=Kr.
n~ro

The proofs of (1) and (3) can be found in [5].

(3)
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Bernstein's theorem also implies the existence of constants L r such that for
all rEIN and n ~ r - 1,

(4)

but it does not give upper bounds for L r •

1. DEFINITIONS

Let C[-1, 1] be the space of all real continuous functions on [-1, 11 with
the norm

II gII:= max Ig(x)1·
-1<x<1

Let ~ be the space of all algebraic polynomials of degree at most n;
furthermore, let

be the approximation error on C[-1, 1]. Let W r be the space of all functions
g with g, g', g",..., g(r-II in C[-1, 11 and I g(r)1 ~ 1 a.e. The constant
E,,(Wr ) is defined by

Analogously let C2>t be the space of all real continuous 2n-periodic
functions with the norm (K := [0, 2n])

11/11* := max I/(x)l·
xeK

Let f5,. be the space of all trigonometric polynomials of degree at most n
and let

E:(f):= inf III - tll*
(ego"

be the approximation error on C2". Let w;!' be the space of all functions f
with f, 1', I",...,pr-I) in C2>t and I/(r)l~ 1 a.e. The constant E:(w;!') is
defined by

E:(w;!'):= sup E~(f).
fEW;



POLYNOMIAL APPROXIMAnON IN W r

According to Favard [1], and Achieser and Krein [2], we define

00

K
r

:= (4In) L (_1)m(r+II(2m + 1)-r-l.
m=O

This implies the inequality

K 2 <K 4 < ... < 41n < ... <K 3 <K 1 = n12.

2. TURNING THE ALGEBRAIC INTO A

TRIGONOMETRIC PROBLEM

3

(5)

(6)

The purpose of this section is to replace En(g) by E:(g 0 sin), and to
deduce upper bounds for En(W1) and E n(W2).

THEOREM 2. Let rEIN, n ~ r - 1, g E Wr, and let

sin t
f(t):= So g(rl(u)(sint-uy- 1 dul(r-l)!

Then

(7)

Proof Let p be the best approximation of g in ..:r". Then g - p has at
least n + 2 alternation points, and (g - p) 0 sin has at least 2n + 2 alter
nation points in [0, 2n). Therefore p 0 sin is the best approximation of
go sin, and

En(g) = 1/ g - pll = II g 0 sin - po sin 1/* = E:(g 0 sin). (8)

By Taylor's theorem we have

r-I
g(sin t) = L g(kl(O). (sin ttlk! + f(t).

k=O

Since n ~ r - 1, we have E:(g 0 sin) = E:(f). I

(9)

THEOREM 3. Let r E lN o' fEe;", n E lN o, and let w(h) be a concave
modulus of continuity of .frl. Then

En*(1) ~+Kr(n + 1)-r w (n: 1) . (10)
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Proof See [31.
To prove Theorem 1 for r = 1,2 we need some special considerations

listed in the following theorems:

THEOREM 4. Let n E lN o' Then

(11)

Proof Let g E WI> 0 ~ h ~ n, a, bE IR, 0 ~ b - a ~ h; for f see (7).
w(h) := 2 sin(h/2) is a concave modulus of continuity ofJ, as

If(b) - f(a)1 ~ Isin b - sin al ~ 2 sin(h/2).

By Theorem 3 we get

En(g) = E~(f) ~ !w(n/(n + 1)) = sin(n/2(n + 1)). I

THEOREM 5. Let n E IN. Then

(12)

Proof Let g E W r , t E IR; for f see (7). Then

1f"(t)l= !(cost)2 gfl(Sint)_Sint.(nt gfl(U)dUI

~ (cos t)2 + (sin t)2 = 1. (13)

Therefore we obtain that f E wt, and by (1) and Theorem 2 we have

3. AN UPPER BOUND OF EiWr )

To prove Theorem 1 for r ~ 3, we need several definitions and lemmas.
For all r~ 3 and jE lN o let

Prit) := «d/dty+j-l (sin t - uy-1L=sin t/(r - 1)!, (14)

and

It is obvious that Prj E g;.-l'

Brj := II cos . Prjll*. (15)
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LEMMA 6. Let r;> 3, n ;> r - 1 and g E W r • Then

00

En(g) ~ L BrjKr+j(n + 1)-r-
j
.

j=O

Proof Using Theorem 2 we only have to prove the inequality

00

E:(f) ~ L BrjKr+in + 1)-r-
j
.

j=O

We split up I into several functions fj so that B;/. fj E w:'+j'
For all j and s E !No we define fj andls by

fj E C2n ' f fj = 0, •
K

Iy+j)(t) = g(r)(sin t) . cos t . Pr/t) + canst.,

and

fls=fJ,
K K

nr+S)(t) = ((r - 1)!r I r" t g(r)(sin t)(~ )'+s

. (sin t - uy-l du + canst.

5

(16)

(17)

(18)

(19)

By calculation of I(r) we get

I(r) =/~r) +l~r) + canst. (20)

Since fKI(r) = °= fK/~r) +fKl~) and fKI= fK/o + fKIo we obtain
1=10 +10· We also have

n,,-+/) = (d/dt)l~,,-+/-l) = I~r+s) + lY+S) + canst. (21)

By similar arguments as above we obtain ls- I = Is + Is, and thus for all
s E!No

Using Theorem 3 and
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we obtain

Since

we have

HERBERT F. SINWEL

Inr+s)(t) -l~r+s)(t')1

~2 s: II (:t)'+S (Sint-uY-11I* du/(r-l)!

~ 2 n(r-1)r+5 (1 + uy-I du/(r-l)!

(23)

(24 )

Combining (22), (23) and (25) we finally get (17). I

LEMMA 7. Let m ~ r ~ 3. Then

en

L Brjm- r- j
~ (1- m- 1

). (m - r)!/m!.
j=O

Proof For r = 3 we have

B 3j = II cost t . «cos 2t)(j) + sin t . (sin t)(j))II* ~ 2j

and
en en

L B 3j m- 3
-
j
~ m- 3 L (2/m)i

j=O j=o

(26)

= (1 - m-I) . (m - 3)!/m!. (27)

Now suppose (26) being proved for r. We prove (26) for r + 1: For j ~ 1
we get Pr+lJ = cos . Prj + P~+l.i-l' Since Pr+l.o=Cosr=cos· PrO' we
obtain

i
Pr+ IJ = L (cos· Pr.i_k)(k).

k=O

Using Bernstein's inequality we have

i

Br+l.i ~ II Pr+ l,ill* ~ L rkBr,i_k'
k=O

(28)

(29)
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and therefore

00

'\' B -r-l-j
L r+ l,jm
j=o

00 00

,,;;; L Brjm-r- j . m- I . L (rlm)k
j=o k=o

00

=(m-r)-I. L Brjm-r-j";;;(l-m-I). (m-r-1)!lm!. I
j=o

LEMMA 8. Let m ~ r ~ 3. Then
00

L BrjKr+jm-r-j <Kr(m - r)!lm!.
j=O

7

(30)

Proof For r odd we have Kr~ Kr+j (see (6», and by Lemma 7 we get
00

L BrjKr+jm-r-j";;;(I-m-I).Kr· (m-r)!lm!. (31)
j=O

For r even we have Kr+1 ~Kr+j' and thus

00

~ B K -r-j...... rj r+jm
j=O

00 00

";;;KrL Brjm-r-
j + (Kr+1 -Kr) L Brjm- r-

j

j=O j=1

,,;;; Kr(l - m-I)(m - r)!lm! + (Kr+1 - Kr)((m - r)!lm! - m- r)

= (1 - m- I + (Kr+IIKr - 1)(1 - m-rm!/(m - r)!» Kr(m - r)!lm!.(32)

Now we use two simple estimates, namely,

1 - m- r . m!/(m - r)! < 1 - m-r(m - r), = 1 - (1 - rimY < r2lm, (33)

and

Kr+IIKr = (~o (1 +2m)-r-2)/(~o (_1)m(1 +2m)-r-t)

< (1 + ];1 3- r(1 +2m)-2)/(1-3- r- l
)

= (1 + (n2/8 -1)3-r)/(I- 3- r
-

l
)

= 1 + (n 2/8 -1 +3- 1)/(3' - 3- 1
)

< 1 + 1/((1 + 2)' - 1)

< 1 + 1/(1 +2r+2r(r-l)-1)= 1 + 1/2r2. (34)
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Combining (32), (33) and (34) we obtain

00

'" B K -r-j < (1 -1 2-] -I)K ( )'1'L. rj r+jm -m + m. rm-r.m.
j=O

I (35)

Now Theorem 1 follows by Lemma 6 and Lemma 8 for r ~ 3, and by
Theorem 4, resp. 5 for r = 1, resp. 2.

REMARKS

Another representation of Theorem 1 is the following.

COROLLARY 9. Let rE IN, n~ r-1, gE cr[-I, 1). Then there exists a
polynomial p E ..9'n with

II g- pll ~ II g(rlll . K r • (n + 1 - r)!/(n + 1)1. (36)

Proof If II girl II = 0, then g E !r,.-I c..9'". If II gIrl II *- 0, (36) follows by
Theorem 1 and gill g(rlll E Wr • •

Note that for small n the upper bound of En(Wr) given is not very good.
For n = r - 1 it is known (see Fisher [5]) that

Er_,(Wr) = 21
-

r/r!,

while our inequality gives only
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