Uniform Approximation of Differentiable Functions by Algebraic Polynomials

Herbert F. Sinwel*
Mathematisches Institut, Johannes Kepler Universität, Linz, Austria
Communicated by P. L. Butzer
Received June 7, 1979

Introduction

In this paper we deduce a special form of Jackson's fundamental direct theorem of best approximation. We give an asymptotic best upper bound of the uniform approximation error of differentiable functions by algebraic polynomials.

We attempt to find the algebraic version of the theorem of Favard [1], and Achieser and Krein [2]:

$$
\begin{equation*}
E_{n}\left(W_{r}\right)=K_{r}(n+1)^{-r} . \tag{1}
\end{equation*}
$$

In Sections 2 and 3 we prove the following

Theorem 1. Let $r \in \mathbb{N}$ and $n \geqslant r-1$. Then

$$
\begin{equation*}
E_{n}\left(W_{r}\right)<K_{r} \cdot(n+1-r)!/(n+1)! \tag{2}
\end{equation*}
$$

The constant K_{r} cannot be improved. This fact is a result of Bernstein's theorem [4]:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{r} \cdot E_{n}\left(W_{r}\right)=K_{r} \tag{3}
\end{equation*}
$$

The proofs of (1) and (3) can be found in [5].

[^0]Bernstein's theorem also implies the existence of constants L_{r} such that for all $r \in \mathbb{N}$ and $n \geqslant r-1$,

$$
\begin{equation*}
广 E_{n}\left(W_{r}\right) \leqslant L_{r} \cdot n^{-r} \tag{4}
\end{equation*}
$$

but it does not give upper bounds for L_{r}.

1. Definitions

Let $C[-1,1]$ be the space of all real continuous functions on $[-1,1]$ with the norm

$$
\|g\|:=\max _{-1 \leqslant x \leqslant 1}|g(x)|
$$

Let \mathscr{P}_{n} be the space of all algebraic polynomials of degree at most n; furthermore, let

$$
E_{n}(g):=\inf _{p \in \mathscr{P}_{n}}\|g-p\|
$$

be the approximation error on $C[-1,1]$. Let W_{r} be the space of all functions g with $g, g^{\prime}, g^{\prime \prime}, \ldots, g^{(r-1)}$ in $C[-1,1]$ and $\left|g^{(r)}\right| \leqslant 1$ a.e. The constant $E_{n}\left(W_{r}\right)$ is defined by

$$
E_{n}\left(W_{r}\right):=\sup _{g \in W_{r}} E_{n}(g)
$$

Analogously let $C_{2 \pi}$ be the space of all real continuous 2π-periodic functions with the norm ($K:=[\emptyset, 2 \pi]$)

$$
\|f\|^{*}:=\max _{x \in K}|f(x)|
$$

Let \mathscr{F}_{n} be the space of all trigonometric polynomials of degree at most n and let

$$
E_{n}^{*}(f):=\inf _{t \in \mathscr{E}_{n}}\|f-t\|^{*}
$$

be the approximation error on $C_{2 \pi}$. Let W_{r}^{*} be the space of all functions f with $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(r-1)}$ in $C_{2 \pi}$ and $|f(r)| \leqslant 1$ a.e. The constant $E_{n}^{*}\left(W_{r}^{*}\right)$ is defined by

$$
E_{n}^{*}\left(W_{r}^{*}\right):=\sup _{f \in W_{r}^{*}} E_{n}^{*}(f)
$$

According to Favard [1], and Achieser and Krein [2], we define

$$
\begin{equation*}
K_{r}:=(4 / \pi) \sum_{m=0}^{\infty}(-1)^{m(r+1)}(2 m+1)^{-r-1} \tag{5}
\end{equation*}
$$

This implies the inequality

$$
\begin{equation*}
K_{2}<K_{4}<\cdots<4 / \pi<\cdots<K_{3}<K_{1}=\pi / 2 . \tag{6}
\end{equation*}
$$

2. Turning the Algebraic into a
 Trigonometric Problem

The purpose of this section is to replace $E_{n}(g)$ by $E_{n}^{*}(g \circ \sin)$, and to deduce upper bounds for $E_{n}\left(W_{1}\right)$ and $E_{n}\left(W_{2}\right)$.

Theorem 2. Let $r \in \mathbb{N}, n \geqslant r-1, g \in W_{r}$, and let

$$
\begin{equation*}
f(t):=\int_{0}^{\sin t} g^{(r)}(u)(\sin t-u)^{r-1} d u /(r-1)! \tag{7}
\end{equation*}
$$

Then

$$
E_{n}(g)=E_{n}^{*}(f)
$$

Proof. Let p be the best approximation of g in \mathscr{F}_{n}. Then $g-p$ has at least $n+2$ alternation points, and $(g-p) \circ \sin$ has at least $2 n+2$ alternation points in $[0,2 \pi)$. Therefore $p \circ \sin$ is the best approximation of $g \circ \sin$, and

$$
\begin{equation*}
E_{n}(g)=\|g-p\|=\|g \circ \sin -p \circ \sin \|^{*}=E_{n}^{*}(g \circ \sin) \tag{8}
\end{equation*}
$$

By Taylor's theorem we have

$$
\begin{equation*}
g(\sin t)=\sum_{k=0}^{r-1} g^{(k)}(0) \cdot(\sin t)^{k} / k!+f(t) \tag{9}
\end{equation*}
$$

Since $n \geqslant r-1$, we have $E_{n}^{*}(g \circ \sin)=E_{n}^{*}(f)$.
Theorem 3. Let $r \in \mathbb{N}_{0}, f \in C_{2 \pi}^{r}, n \in \mathbb{N}_{0}$, and let $\omega(h)$ be a concave modulus of continuity of $f^{(r)}$. Then

$$
\begin{equation*}
E_{n}^{*}(f) \leqslant \frac{1}{2} K_{r}(n+1)^{-r} \omega\left(\frac{\pi}{n+1}\right) \tag{10}
\end{equation*}
$$

Proof. See [3].
To prove Theorem 1 for $r=1,2$ we need some special considerations listed in the following theorems:

Theorem 4. Let $n \in \mathbb{N}_{0}$. Then

$$
\begin{equation*}
E_{n}\left(W_{1}\right) \leqslant \sin (\pi / 2(n+1))<K_{1} /(n+1) \tag{11}
\end{equation*}
$$

Proof. Let $g \in W_{1}, 0 \leqslant h \leqslant \pi, a, b \in \mathbb{R}, 0 \leqslant b-a \leqslant h$; for f see (7). $\omega(h):=2 \sin (h / 2)$ is a concave modulus of continuity of f, as

$$
|f(b)-f(a)| \leqslant|\sin b-\sin a| \leqslant 2 \sin (h / 2)
$$

By Theorem 3 we get

$$
E_{n}(g)=E_{n}^{*}(f) \leqslant \frac{1}{2} \omega(\pi /(n+1))=\sin (\pi / 2(n+1))
$$

Theorem 5. Let $n \in \mathbb{N}$. Then

$$
\begin{equation*}
E_{n}\left(W_{2}\right) \leqslant K_{2}(n+1)^{-2}<K_{2}(n-1)!/(n+1)! \tag{12}
\end{equation*}
$$

Proof. Let $g \in W_{r}, t \in \mathbb{R}$; for f see (7). Then

$$
\begin{align*}
\left|f^{\prime \prime}(t)\right| & =\left|(\cos t)^{2} g^{\prime \prime}(\sin t)-\sin t \cdot \int_{0}^{\sin t} g^{\prime \prime}(u) d u\right| \\
& \leqslant(\cos t)^{2}+(\sin t)^{2}=1 \tag{13}
\end{align*}
$$

Therefore we obtain that $f \in W_{2}^{*}$, and by (1) and Theorem 2 we have

$$
E_{n}(g)=E_{n}^{*}(f) \leqslant K_{2}(n+1)^{-2}
$$

3. An Upper Bound of $E_{n}\left(W_{r}\right)$

To prove Theorem 1 for $r \geqslant 3$, we need several definitions and lemmas. For all $r \geqslant 3$ and $j \in \mathbb{N}_{0}$ let

$$
\begin{equation*}
p_{r j}(t):=\left((d / d t)^{r+j-1}(\sin t-u)^{r-1}\right)_{u=\sin t} /(r-1)! \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{r j}:=\left\|\cos \cdot p_{r j}\right\|^{*} \tag{15}
\end{equation*}
$$

It is obvious that $p_{r j} \in \mathscr{E}_{r-1}$.

Lemma 6. Let $r \geqslant 3, n \geqslant r-1$ and $g \in W_{r}$. Then

$$
\begin{equation*}
E_{n}(g) \leqslant \sum_{j=0}^{\infty} B_{r j} K_{r+j}(n+1)^{-r-j} \tag{16}
\end{equation*}
$$

Proof. Using Theorem 2 we only have to prove the inequality

$$
\begin{equation*}
E_{n}^{*}(f) \leqslant \sum_{j=0}^{\infty} B_{r j} K_{r+j}(n+1)^{-r-j} \tag{17}
\end{equation*}
$$

We split up f into several functions f_{j} so that $B_{r j}^{-1} . f_{j} \in W_{r+j}^{*}$. For all j and $s \in \mathbb{N}_{0}$ we define f_{j} and f_{s} by

$$
\begin{gather*}
f_{j} \in C_{2 \pi}, \quad \int_{K} f_{j}=0, \tag{18}\\
f_{j}^{(r+j)}(t)=g^{(r)}(\sin t) \cdot \cos t \cdot p_{r j}(t)+\text { const. }
\end{gather*}
$$

and

$$
\begin{gather*}
f_{s} \in C_{2 \pi}, \quad \int_{K} \tilde{f_{s}}=\int_{K} f \\
\tilde{f}_{s}^{(r+s)}(t)=((r-1)!)^{-1} \int_{0}^{\sin t} g^{(r)}(\sin t)\left(\frac{d}{d t}\right)^{r+s} \\
\cdot(\sin t-u)^{r-1} d u+\text { const. } \tag{19}
\end{gather*}
$$

By calculation of $f(r)$ we get

$$
\begin{equation*}
f^{(r)}=f_{0}^{(r)}+f_{0}^{(r)}+\text { const. } \tag{20}
\end{equation*}
$$

Since $\int_{K} f^{(r)}=0=\int_{K} f_{0}^{(r)}+\int_{K} f_{0}^{(r)}$ and $\int_{K} f=\int_{K} f_{0}+\int_{K} f_{0}$ we obtain $f=f_{0}+f_{0}$. We also have

$$
\begin{equation*}
\tilde{f}_{s-1}^{(r+s)}=(d / d t) f_{s-1}^{(r+s-1)}=f_{s}^{(r+s)}+\tilde{f}_{s}^{(r+s)}+\text { const. } \tag{21}
\end{equation*}
$$

By similar arguments as above we obtain $\hat{f}_{s-1}=f_{s}+\hat{f}_{s}$, and thus for all $s \in \mathbb{N}_{0}$

$$
\begin{equation*}
E_{n}^{*}(f)=E_{n}^{*}\left(\sum_{j=0}^{s} f_{j}+f_{s}\right) \leqslant \sum_{j=0}^{\infty} E_{n}^{*}\left(f_{j}\right)+E_{n}^{*}\left(\tilde{f}_{s}\right) \tag{22}
\end{equation*}
$$

Using Theorem 3 and

$$
\left|f_{j}^{(r+j)}(t)-f_{j}^{(r+j)}\left(t^{\prime}\right)\right| \leqslant 2\left\|\cos \cdot p_{r j}\right\|^{*}=2 B_{r j}
$$

we obtain

$$
\begin{equation*}
E_{n}^{*}\left(f_{j}\right) \leqslant B_{r j} K_{r+j}(n+1)^{-r-j} \tag{23}
\end{equation*}
$$

Since

$$
\begin{align*}
& \left|\tilde{f}_{s}^{(r+s)}(t)-\tilde{f}_{s}^{(r+s)}\left(t^{\prime}\right)\right| \\
& \quad \leqslant 2 \int_{0}^{1}\left\|\left(\frac{d}{d t}\right)^{r+s}(\sin t-u)^{r-1}\right\|^{*} d u /(r-1)! \\
& \quad \leqslant 2 \int_{0}^{1}(r-1)^{r+s}(1+u)^{r-1} d u /(r-1)! \\
& \quad<2^{r+1}(r-1)^{r+s} / r! \tag{24}
\end{align*}
$$

we have

$$
\begin{equation*}
\lim _{s \rightarrow \infty} E_{n}^{*}\left(\tilde{f}_{s}\right) \leqslant \lim _{s \rightarrow \infty}\left(2^{r} / r!\right) K_{r+s}((r-1) /(n+1))^{r+s}=0 \tag{25}
\end{equation*}
$$

Combining (22), (23) and (25) we finally get (17).
Lemma 7. Let $m \geqslant r \geqslant 3$. Then

$$
\begin{equation*}
\sum_{j=0}^{\infty} B_{r j} m^{-r-j} \leqslant\left(1-m^{-1}\right) \cdot(m-r)!/ m! \tag{26}
\end{equation*}
$$

Proof. For $r=3$ we have

$$
B_{3 j}=\left\|\operatorname{cost} t \cdot\left((\cos 2 t)^{(j)}+\sin t \cdot(\sin t)^{(j)}\right)\right\|^{*} \leqslant 2^{j}
$$

and

$$
\begin{align*}
\sum_{j=0}^{\infty} B_{3 j} m^{-3-j} & \leqslant m^{-3} \sum_{j=0}^{\infty}(2 / m)^{j} \\
& =\left(1-m^{-1}\right) \cdot(m-3)!/ m! \tag{27}
\end{align*}
$$

Now suppose (26) being proved for r. We prove (26) for $r+1$: For $j \geqslant 1$ we get $p_{r+1, j}=\cos \cdot p_{r j}+p_{r+1, j-1}^{\prime}$. Since $p_{r+1,0}=\cos ^{r}=\cos \cdot p_{r 0}$, we obtain

$$
\begin{equation*}
p_{r+1, j}=\sum_{k=0}^{j}\left(\cos \cdot p_{r, j-k}\right)^{(k)} \tag{28}
\end{equation*}
$$

Using Bernstein's inequality we have

$$
\begin{equation*}
B_{r+1, j} \leqslant\left\|p_{r+1, j}\right\|^{*} \leqslant \sum_{k=0}^{j} r^{k} B_{r, j-k} \tag{29}
\end{equation*}
$$

and therefore

$$
\begin{aligned}
& \sum_{j=0}^{\infty} B_{r+1, j} m^{-r-1-j} \\
& \leqslant \sum_{j=0}^{\infty} B_{r j} m^{-r-j} \cdot m^{-1} \cdot \sum_{k=0}^{\infty}(r / m)^{k} \\
&=(m-r)^{-1} \cdot \sum_{j=0}^{\infty} B_{r j} m^{-r-j} \leqslant\left(1-m^{-1}\right) \cdot(m-r-1)!/ m!
\end{aligned}
$$

Lemma 8. Let $m \geqslant r \geqslant 3$. Then

$$
\begin{equation*}
\sum_{j=0}^{\infty} B_{r j} K_{r+j} m^{-r-j}<K_{r}(m-r)!/ m! \tag{30}
\end{equation*}
$$

Proof. For r odd we have $K_{r} \geqslant K_{r+j}$ (see (6)), and by Lemma 7 we get

$$
\begin{equation*}
\sum_{j=0}^{\infty} B_{r j} K_{r+j} m^{-r-j} \leqslant\left(1-m^{-1}\right) \cdot K_{r} \cdot(m-r)!/ m! \tag{31}
\end{equation*}
$$

For r even we have $K_{r+1} \geqslant K_{r+j}$, and thus

$$
\begin{align*}
& \sum_{j=0}^{\infty} B_{r j} K_{r+j} m^{-r-j} \\
& \leqslant K_{r} \sum_{j=0}^{\infty} B_{r j} m^{-r-j}+\left(K_{r+1}-K_{r}\right) \sum_{j=1}^{\infty} B_{r j} m^{-r-j} \\
& \leqslant K_{r}\left(1-m^{-1}\right)(m-r)!/ m!+\left(K_{r+1}-K_{r}\right)\left((m-r)!/ m!-m^{-r}\right) \\
&=\left(1-m^{-1}+\left(K_{r+1} / K_{r}-1\right)\left(1-m^{-r} m!/(m-r)!\right)\right) K_{r}(m-r)!/ m! \tag{32}
\end{align*}
$$

Now we use two simple estimates, namely,

$$
\begin{equation*}
1-m^{-r} \cdot m!/(m-r)!<1-m^{-r}(m-r)^{r}=1-(1-r / m)^{r}<r^{2} / m \tag{33}
\end{equation*}
$$

and

$$
\begin{align*}
K_{r+1} / K_{r} & =\left(\sum_{m=0}^{\infty}(1+2 m)^{-r-2}\right) /\left(\sum_{m=0}^{\infty}(-1)^{m}(1+2 m)^{-r-1}\right) \\
& <\left(1+\sum_{m=1}^{\infty} 3^{-r}(1+2 m)^{-2}\right) /\left(1-3^{-r-1}\right) \\
& =\left(1+\left(\pi^{2} / 8-1\right) 3^{-r}\right) /\left(1-3^{-r-1}\right) \\
& =1+\left(\pi^{2} / 8-1+3^{-1}\right) /\left(3^{r}-3^{-1}\right) \\
& <1+1 /\left((1+2)^{r}-1\right) \\
& <1+1 /(1+2 r+2 r(r-1)-1)=1+1 / 2 r^{2} \tag{34}
\end{align*}
$$

Combining (32), (33) and (34) we obtain

$$
\begin{equation*}
\sum_{j=0}^{\infty} B_{r j} K_{r+j} m^{-r-j}<\left(1-m^{-1}+2^{-1} m^{-1}\right) K_{r}(m-r)!/ m! \tag{35}
\end{equation*}
$$

Now Theorem 1 follows by Lemma 6 and Lemma 8 for $r \geqslant 3$, and by Theorem 4, resp. 5 for $r=1$, resp. 2.

Remarks

Another representation of Theorem 1 is the following.
Corollary 9. Let $r \in \mathbb{N}, n \geqslant r-1, g \in C^{r}[-1,1]$. Then there exists a polynomial $p \in \mathscr{P}_{n}$ with

$$
\begin{equation*}
\|g-p\| \leqslant\left\|g^{(r)}\right\| \cdot K_{r} \cdot(n+1-r)!/(n+1)! \tag{36}
\end{equation*}
$$

Proof. If $\left\|g^{(r)}\right\|=0$, then $g \in \mathscr{G}_{r-1} \subset \mathscr{P}_{n}$. If $\left\|g^{(r)}\right\| \neq 0$, (36) follows by Theorem 1 and $g /\left\|g^{(r)}\right\| \in W_{r}$.

Note that for small n the upper bound of $E_{n}\left(W_{r}\right)$ given is not very good. For $n=r-1$ it is known (see Fisher [5]) that

$$
E_{r-1}\left(W_{r}\right)=2^{1-r} / r!
$$

while our inequality gives only

$$
E_{r-1}\left(W_{r}\right)<K_{r} / r!
$$

References

1. J. Favard, Sur les meilleures procedés d'approximation de certaines classes des fonctions par des polynômes trigonometriques, Bull. Sci. Math. 61 (1937), 109-224; 243-256.
2. N. I. Achieser and M. G. Krein, On the best approximation of periodic functions, Dokl. Akad. Nauk SSSR 15 (1937), 107-112.
3. N. P. Korneichuk, On methods of investigating extremal problems in the theory of best approximation, Russian Math. Surveys 29, No. 3 (1974), 7-43.
4. S. N. Bernstein, "Collected Works," Vol. II, Akad. Nauk SSSR, Moscow, 1954.
5. S. D. Fisher, Best approximation by polynomials, J. Approx. Theory 21 (1977), 43-59.

[^0]: *Research supported by the Austrian Fonds zur Förderung der wissenschaftichen Forschung.

