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INTRODUCTION

In this paper we deduce a special form of Jackson’s fundamental direct
theorem of best approximation. We give an asymptotic best upper bound of
the uniform approximation error of differentiable functions by algebraic

polynomials.
We attempt to find the algebraic version of the theorem of Favard [1], and
Achieser and Krein |2):

EW,)=K,(n+1)". (1)
In Sections 2 and 3 we prove the following

THEOREM 1. LetrENand n>r— 1. Then

E(W,) <K, (n+1=n)l/(n+ 1) @)

The constant K, cannot be improved. This fact is a result of Bernstein’s
theorem [4]:
lim ann(Wr)zKr (3)

H—CO

The proofs of (1) and (3) can be found in [5].
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Bernstein’s theorem also implies the existence of constants L, such that for
alreNandnxr—1,

/En(Wr)<Lr n~"; (4)

but it does not give upper bounds for L,.

1. DEFINITIONS

Let C[—1, 1] be the space of all real continuous functions on [—1, 1] with
the norm

lgll:= max |g(x).

Let %, be the space of all algebraic polynomials of degree at most n;
furthermore, let

E,(g):= inf |lg—pl

be the approximation error on C[—1, 1]. Let W, be the space of all functions
g with g, g, g"..., g7V in C[-1,1] and | g <1 ae. The constant
E (W) is defined by

E(W,) = sup E,(g)

Analogously let C,, be the space of all real continuous 27-periodic
functions with the norm (X := [0, 2x])

ILFI* = max [ f(x)].

Let &, be the space of all trigonometric polynomials of degree at most n
and let

EX(f) = jnf IS 1l

be the approximation error on C,,. Let W} be the space of all functions f
with £, £/, f"s fU7 in C,, and | f(r)| < 1 a.e. The constant EF(WY) is
defined by

Ex(Wy) = sup EZ(f).
fews
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According to Favard [1], and Achieser and Krein [2], we define
K,=@/n) ¥ (=)t P@2m+ 1)L (5)
m=0

This implies the inequality

K,<K,<+-<4/n<- <K;<K,=m/2. (6)

2. TURNING THE ALGEBRAIC INTO A
TRIGONOMETRIC PROBLEM

The purpose of this section is to replace E,(g) by E¥(g o sin), and to
deduce upper bounds for E, (W) and E (W,).

THEOREM 2. LetreEN,nz2r—1, g€ W,, and let

ro= | " g0 (sin £ — u) " duf(r — 1! )
Then

E(8)=EX(/).

Progf. Let p be the best approximation of g in %,. Then g — p has at
least n 4 2 alternation points, and (g —p) o sin has at least 2n + 2 alter-
nation points in [0, 27). Therefore posin is the best approximation of
g o sin, and

E,(g)=lg—pl=lgosin—peosinf*=E(gesin) @)
By Taylor’s theorem we have
r—1
g(sing)= > g™ (0) - (sin 0)*/k! + f(1). 9)
k=0
Since n > r — 1, we have EX(gosin)=E*(f). 1

THEOREM 3. Let r€N,, fE€C},, n€N,, and let w(h) be a concave
modulus of continuity of f". Then

EFN <5 Km0 (557). (10)
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Proof. See [3].
To prove Theorem 1 for r=1,2 we need some special considerations
listed in the following theorems:

THEOREM 4. Let n € N,. Then
E, (W) <sin(n/2(n+ 1)) < K, /(n + 1). (11)

Proof. let geW,, 0<h<n, a, bER, 0Lb—a<xh; for f see (7).
w(h) := 2 sin(h/2) is a concave modulus of continuity of f, as

| f(b) — f(@)l <|sin b —sin a| < 2 sin(h/2).
By Theorem 3 we get
E,(8)=E;(f) <j0(/(n+ 1)) =sin(r/2(n + 1)). 1
THEOREM 5. Let n € N. Then
E (W) <Ky(n+ 1) 2 <Ky(n~ D)Y/(n+ D (12)

Proof. Let g€ W,, tER; for f see (7). Then

sint
| f7(t) = |(cos t)* g"(sin t) — sin t.j g"(u) du
0
< (cos t)? 4 (sint)? = 1. (13)
Therefore we obtain that f € W¥, and by (1) and Theorem 2 we have

E()=EFN<Kn+1)" |

3. AN UpPER BOUND OF E (W,)

To prove Theorem 1 for r > 3, we need several definitions and lemmas.
For all r >3 and j€ N, let

Poi(t) = ((d/de) ™/~ (sin £ — u)" ™), _gin /(r = 1)L, (14)
and
B, =|cos - p,,lI*. (15)

It is obvious that p,, € &, _,.
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LEMMA 6. Letr>3,n>r—1and g€ W,. Then
sl N
En(g)< Z Bijr+j(n + 1)—r—/. (16)
ji=0
Progf. Using Theorem 2 we only have to prove the inequality
@ s
EXN)< Y ByK, (n+ 1) (17)
izo

We split up f into several functions f; so that B;'. f; € W, ,;.
For all j and s € N, we define f; and f; by

f,EC,,, f f,=0,"
K

(18)
fI(1)=g"(sint) - cost - p,,(t) + const.,
and
J € Cop = £
w [ D=] A
sin ¢ d\"t*
(r+s)py — —1n-! " (gi —_
Few ==y [ eeinn( )
- (sin ¢t — u)"~" du + const. (19)

By calculation of f(r) we get
SO=f + 78 + const. (20)

Since [ [ =0=[x [+ [xJ{ and [ f=[cfo+ xSy we obtain
f=fy +f,. We also have

SERD = dfde) FUH 0 = fU9 4 U9 4 const. (21)

By similar arguments as above we obtain f,_, = f, + f;, and thus for all
S§E N,

E3(f)=E (Z 5+ 7)< 3 B + B (22)
Using Theorem 3 and

Lf420) = £ 7)< 2l eos - p,ylI* = 2B,
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we obtain
E:f(-f}) < Bijr+j(n + l)vr_j'

Since
| JE9 @) — Foo@)
< 2[0‘ (%)m (sin £ — u) ! }* du/(r — 1)!
L2 — 1+ (1 +u) " duf(r— 1)t
<=1y *r,
we have

lim EX(f) < lim /) K, , ((r—1)/(n+ 1)) **=0
Combining (22), (23) and (25) we finally get (17). 1
LEMMA 7. Let m>r> 3. Then

N B m A =mY) . (m—r)l/ml.
j=o

Proof. For r=3 we have
B;;=|cost t - ((cos 26) + sin £ - (sin £)D)|* < 2/

and

® I3 * n
N Bym* I <m™ Y (2/m)
j=0 j=0

=(1—m™1Y. (m—3)/ml

(23)

(24)

(25)

(26)

(27)

Now suppose (26) being proved for r. We prove (26) for r + 1: For j > 1

we get p,.,;=C0S: P+ Priy . SinCe p,., o =C08"=COs: Py, We

obtain
)(k).

J
pr+lJ= Z (COS 'pr,j—k
k=0

Using Bernstein’s inequality we have

J
B i <lproagl*< Z rkBr,jvk’
k=0

(28)

(29)
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and therefore

e
—r—1-j
Z Br+l,jm
0

i=

=(m-r~". i B,m "I —m™ Y (m—r—1)!/m!. B

Jj=0

LemmA 8. Let m>r> 3. Then

A

S'B K, mT T <K (m—r)l/m!. (30)

~.
(=1

Proof. For r odd we have K, > K, ; (see (6)), and by Lemma 7 we get

S B K, m L (1=m ) K, - (m—r)t/m. 31)

Jj=

<

For r even we have K, , > K, ;, and thus

[oe]
—r—j
N BK,, ;m
j=o
o0

o
<Krz Brjm‘r—j+ (Kr+l _Kr) Z Brjm_r‘j
=0

fas!

<KL —m=Ym = r)fm! + K, ,, ~ K,)((m — r)}jm} —m™")
=(1-m '+ &, /K, ~ D1 —m~"ml/(m —r))) K,(m —r)!/m!.(32)

Now we use two simple estimates, namely,

[—m"-mlfm—r)!<l—m " (m—r)=1~(~r/my<r/m, (33)
and
K, /K, = (}; (1 +2m)"‘2)/( INCE 2m)"“>

< <1+ 3 3"(I+2m)‘2)/(1~3"“)
= (1 +k(7t2/8 —-1)37)/1-3"""hH
=1+ @#*8—-1+3"1)/3 -3
<1+ (1 +27—1)
<14+l +2r+2rr—1)—1)=1+ 1/2/ (34)
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Combining (32), (33) and (34) we obtain
N B K, m < (l=—m 27 mm YK (m—r)/m! B (35)
i=o

Now Theorem | follows by Lemma 6 and Lemma 8 for > 3, and by
Theorem 4, resp. 5 for r =1, resp. 2.

REMARKS
Another representation of Theorem 1 is the following.

COROLLARY 9. Let rEN,nzr—1, g€ C'|—1,1). Then there exists a
polynomial p € .5, with

leg—pI<lg”l K, - (n+1=r)/(n+ 1)L (36)

Proof. If g7 =0, then g€ 2 _,c.2,. If | g7 # 0, (36) follows by
Theorem 1 and g/l g€ w,. 1

Note that for small n the upper bound of E,(W,) given is not very good.
For n=r—1 it is known (see Fisher (5]) that

Er-l(Wr) = 21~r/r!,
while our inequality gives only

Er~1(Wr) < Kr/r!'
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